Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water.
نویسندگان
چکیده
The evaporation of water induced by confinement between hydrophobic surfaces has received much attention due to its suggested functional role in numerous biophysical phenomena and its importance as a general mechanism of hydrophobic self-assembly. Although much progress has been made in understanding the basic physics of hydrophobically induced evaporation, a comprehensive understanding of the substrate material features (e.g., geometry, chemistry, and mechanical properties) that promote or inhibit such transitions remains lacking. In particular, comparatively little research has explored the relationship between water's phase behavior in hydrophobic confinement and the mechanical properties of the confining material. Here, we report the results of extensive molecular simulations characterizing the rates, free energy barriers, and mechanism of water evaporation when confined between model hydrophobic materials with tunable flexibility. A single-order-of-magnitude reduction in the material's modulus results in up to a nine-orders-of-magnitude increase in the evaporation rate, with the corresponding characteristic time decreasing from tens of seconds to tens of nanoseconds. Such a modulus reduction results in a 24-orders-of-magnitude decrease in the reverse rate of condensation, with time scales increasing from nanoseconds to tens of millions of years. Free energy calculations provide the barriers to evaporation and confirm our previous theoretical predictions that making the material more flexible stabilizes the confined vapor with respect to liquid. The mechanism of evaporation involves surface bubbles growing/coalescing to form a subcritical gap-spanning tube, which then must grow to cross the barrier.
منابع مشابه
Comparison of thermodynamics and kinetics of reaction of the ozone with mercury, silver and gold
In this work, we report results of calculations based on the density functional theory of different species metal-ozone, containing mercury, silver and gold. The chosen species range from small molecules and large transition-metal containing ozone with mercury, silver and gold complexes. A comparative analysis of the description of the metal-oxygen bond obtained by different methodologies is pr...
متن کاملInvestigation of chlorpyriphos removal using chitosan graphene oxide composite form aquatic solution: study of kinetics, isotherms and thermodynamics
Background and Aims: Chlorpyriphos is one of the most important widely used pesticides in agriculture, which is discharged into the water resources and is associated with various adverse effects on human health and the environment. The purpose of this study was to evaluate chlorpyriphos removal by chitosan graphene oxide composite form aquatic solution. Materials and Methods: The characteristic...
متن کاملRemoval of caffeine from aqueous solution using multi-wall carbon nanotubes: kinetic, isotherm, and thermodynamics studies
The occurrence of contaminants in wastewaters, and their behavior during wastewater treatment and production of drinking water are key issues to re-use water resources. The present research aims to remove caffeine from aqueous solutions via adsorption technique, using Multi-Wall Carbon Nanotubes (MWCNTs) as an adsorbent under different experimental conditions. The processing variables such as p...
متن کاملKinetics and thermodynamics of the esterification reaction according to the Langmuir-Hinshelwood mechanism
In this work, kinetics and thermodynamics of esterification reaction were studied. This research investigated the esterification reaction between methanol and acidified oil catalyzed by sulfonated cation exchange resin and proposed a new rate equation for consideration of kinetics of this reaction according to the Langmuir-Hinshelwood mechanism. Thermodynamics and kinetics parameters were calcu...
متن کاملKinetics and thermodynamics of the esterification reaction according to the Langmuir-Hinshelwood mechanism
In this work, kinetics and thermodynamics of esterification reaction were studied. This research investigated the esterification reaction between methanol and acidified oil catalyzed by sulfonated cation exchange resin and proposed a new rate equation for consideration of kinetics of this reaction according to the Langmuir-Hinshelwood mechanism. Thermodynamics and kinetics parameters were calcu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 13 شماره
صفحات -
تاریخ انتشار 2017